
Central extensions of restricted Lie superalgebras and
classification of p-nilpotent Lie superalgebras in

dimension 4

Quentin Ehret

Non-associative Algebras, Representations, and Applications

Shenzhen, 2024

Joint work with Sofiane Bouarroudj



1 Preliminaries

2 Restricted cohomology and central extensions
A (very) brief history of restricted cohomology
Restricted cohomology for restricted Lie superalgebras
Central extensions of restricted Lie superalgebras

3 Classification of low dimensional restricted Lie superalgebras
A brief history of classification of restricted Lie algebras
Dimension 3
Dimension 4

2 / 22



Restricted Lie algebras

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map (·)[p] : L −→ L satisfying for all
x , y ∈ L and for all λ ∈ K:

1 (λx)[p] = λpx [p];

2

[
x , y [p]

]
= [[· · · [x ,

p terms︷ ︸︸ ︷
y ], y ], · · · , y ];

3 (x + y)[p] = x [p] + y [p] +

p−1∑
i=1

si (x , y), Nathan Jacobson (1910-1999)

with isi (x , y) the coefficient of Z i−1 in adp−1
Zx+y (x). Such a map (−)[p] : L −→ L is called p-map.

Example: any associative algebra A with [a, b] = ab − ba and a[p] = ap, ∀a, b ∈ A.
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Restricted Lie algebras

Definition

A Lie algebra morphism f :
(
L, [·, ·], (·)[p]

)
→

(
L′, [·, ·]′, (·)[p]′

)
is called restricted

if
f
(
x [p]

)
= f (x)[p]

′
, ∀x ∈ L.

A L-module M is called restricted if

x [p] · m =

( p terms︷ ︸︸ ︷
x · (x · · · (x · m) · · · )

)
, ∀x ∈ L, ∀m ∈ M.
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Restricted Lie superalgebras

Definition (Restricted Lie superalgebra)

A restricted Lie superalgebra is a Lie superalgebra L = L0̄ ⊕ L1̄ such that

1 The even part L0̄ is a restricted Lie algebra;

2 The odd part L1̄ is a Lie L0̄-module;

3

[
x , y [p]

]
= [[...[x ,

p terms︷ ︸︸ ︷
y ], y ], ..., y ], ∀x ∈ L1̄, y ∈ L0̄.

We can define a map (·)[2p] : L1̄ → L0̄ by

x [2p] =
(
x2

)[p]
, with x2 =

1

2
[x , x ], x ∈ L1̄.

Theorem (Jacobson)

Let (ej)j∈J be a basis of L0̄, and let the elements fj ∈ L0̄ be such that
(adej )

p = adfj . Then, there exists exactly one p|2p-mapping (·)[p|2p] : L → L such
that

e
[p]
j = fj for all j ∈ J.
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A (very) brief history of restricted cohomology

1955 (Hochschild): Hn
∗(L,M) := ExtnUp(L)(F,M).

Gerhard Hochschild

2000 (Evans-Fuchs): explicit constructions of 2-cocycles and central
extensions.

Tyler J. Evans
Dmitry B. Fuchs

2020 (Yuan-Chen-Cao): attempt to generalize to the superalgebras case.
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Restricted cohomology for restricted Lie superalgebras

Let L = L0̄ ⊕ L1̄ be a restricted Lie superalgebra and let M be a L-module.

We set C 0
∗ (L,M) = M and C 1

∗ (L,M) = Hom(L,M).

Definition (Restricted 2-cochains)

Let φ ∈ C 2
CE (L,M) (ordinary Chevalley-Eilenberg 2-cochain) and ω : L −→ M.

Then ω is φ-compatible if

1 ω(λx) = λpω(x), ∀λ ∈ F, ∀x ∈ L0̄;

2 ω(x + y) = ω(x) + ω(y) +∑
xi=x or y
x1=x, x2=y

1

♯(x)

p−2∑
k=0

(−1)kxp · · · xp−k+1φ
(
[[· · · [x1, x2], x3] · · · , xp−k−1], xp−k

)
,

with x , y ∈ L0̄, ♯(x) the number of factors xi equal to x.

C 2
∗ (L,M) :=

{
(φ, ω), φ ∈ C 2

CE (L,M), ω is φ-compatible
}

⇝ We have a similar (although more complicated) definition for C 3
∗ (L,M).
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Restricted cohomology for restricted Lie superalgebras

For (φ, ω) ∈ C 2
∗ (L;M), we write

(φ, ω) = (φ0̄, ω0̄) + (φ1̄, ω1̄), where Im(ωj̄) ⊆ Mj̄ . (1)

Observe that also (φj̄ , ωj̄) ∈ C 2
∗ (L;M), thanks to the φ-compatibility.

In the sequel we will define the maps

0 −→ C 0
∗ (L,M)

(=C 0
CE

(L,M))

d0
∗−→ C 1

∗ (L,M)
(=C 1

CE
(L,M))

d1
∗−→ C 2

∗ (L,M)
d2

∗−→ C 3
∗ (L,M).

First, we take d0
∗ := d0

CE .
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Restricted cohomology for restricted Lie superalgebras

Definition of the map d1
∗ : C 1

∗ (L,M) −→ C 2
∗ (L,M).

An element φ ∈ C 1
∗ (L;M) induces a map ind1(φ) : L0̄ → M given by

ind1(φ)(x) = φ
(
x [p]

)
−xp−1φ(x).

Theorem (Evans-Fuchs)

1 The map ind1(φ) is d1
CEφ-compatible. Therefore,

d1
∗(φ) :=

(
d1
CEφ, ind

1(φ)
)

∈ C 2
∗ (L;M).

2 We have d1
∗ ◦ d0

∗ = 0.

3 The space H1
∗(L;M) := Ker

(
d1

∗
)
/Im

(
d0

∗
)
is well defined.
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Restricted cohomology for restricted Lie superalgebras

Definition of the map d2
∗ : C 2

∗ (L,M) −→ C 3
∗ (L,M).

An element (φ, ω) ∈ C 2
∗ (L;M) induces a map ind2(φ, ω) : L × L0̄ → M defined by

ind2(φ, ω)(x , y) =φ
(
x , y [p]

)
−

∑
i+j=p−1

(−1)iy iφ
(
[[· · · [x ,

j terms︷ ︸︸ ︷
y ], · · · ], y ], y

)
+ (−1)|φ||x|xω(y),

for Im(ω) ⊆ M|φ|, and then extended using (1).

Theorem (Bouarroudj-E.)

1 The map ind2(φ, ω) is d2
CEφ-compatible.

2 We have d2
∗ ◦ d1

∗ = 0, where d2
∗(φ, ω) :=

(
d2
CEφ, ind

2(φ, ω)
)
.

3 The space H2
∗(L;M) := Ker

(
d2

∗
)
/Im

(
d1

∗
)
is well defined.

10 / 22



Restricted cohomology for restricted Lie superalgebras

Definition of the map d2
∗ : C 2

∗ (L,M) −→ C 3
∗ (L,M).

An element (φ, ω) ∈ C 2
∗ (L;M) induces a map ind2(φ, ω) : L × L0̄ → M defined by

ind2(φ, ω)(x , y) =φ
(
x , y [p]

)
−

∑
i+j=p−1

(−1)iy iφ
(
[[· · · [x ,

j terms︷ ︸︸ ︷
y ], · · · ], y ], y

)
+ (−1)|φ||x|xω(y),

for Im(ω) ⊆ M|φ|, and then extended using (1).

Theorem (Bouarroudj-E.)

1 The map ind2(φ, ω) is d2
CEφ-compatible.

2 We have d2
∗ ◦ d1

∗ = 0, where d2
∗(φ, ω) :=

(
d2
CEφ, ind

2(φ, ω)
)
.

3 The space H2
∗(L;M) := Ker

(
d2

∗
)
/Im

(
d1

∗
)
is well defined.

10 / 22



Restricted cohomology for restricted Lie superalgebras

Definition of the map d2
∗ : C 2

∗ (L,M) −→ C 3
∗ (L,M).

An element (φ, ω) ∈ C 2
∗ (L;M) induces a map ind2(φ, ω) : L × L0̄ → M defined by

ind2(φ, ω)(x , y) =φ
(
x , y [p]

)
−

∑
i+j=p−1

(−1)iy iφ
(
[[· · · [x ,

j terms︷ ︸︸ ︷
y ], · · · ], y ], y

)
+ (−1)|φ||x|xω(y),

for Im(ω) ⊆ M|φ|, and then extended using (1).

Theorem (Bouarroudj-E.)

1 The map ind2(φ, ω) is d2
CEφ-compatible.

2 We have d2
∗ ◦ d1

∗ = 0, where d2
∗(φ, ω) :=

(
d2
CEφ, ind

2(φ, ω)
)
.

3 The space H2
∗(L;M) := Ker

(
d2

∗
)
/Im

(
d1

∗
)
is well defined.

10 / 22



Restricted cohomology for restricted Lie superalgebras

Definition of the map d2
∗ : C 2

∗ (L,M) −→ C 3
∗ (L,M).

An element (φ, ω) ∈ C 2
∗ (L;M) induces a map ind2(φ, ω) : L × L0̄ → M defined by

ind2(φ, ω)(x , y) =φ
(
x , y [p]

)
−

∑
i+j=p−1

(−1)iy iφ
(
[[· · · [x ,

j terms︷ ︸︸ ︷
y ], · · · ], y ], y

)
+ (−1)|φ||x|xω(y),

for Im(ω) ⊆ M|φ|, and then extended using (1).

Theorem (Bouarroudj-E.)

1 The map ind2(φ, ω) is d2
CEφ-compatible.

2 We have d2
∗ ◦ d1

∗ = 0, where d2
∗(φ, ω) :=

(
d2
CEφ, ind

2(φ, ω)
)
.

3 The space H2
∗(L;M) := Ker

(
d2

∗
)
/Im

(
d1

∗
)
is well defined.

10 / 22



Example of computation

An example. Consider the Lie superalgebra

L =< e1|e2, e3 >, [e1, e2] = e3, e
[p]
1 = 0.

Let φ ∈ C 2
CE(L; L). A map ω : L0̄ → L is φ-compatible if and only if

ω(λx) = λpω(x) and ω(x + y) = ω(x) + ω(y), ∀x , y ∈ L0̄, ∀λ ∈ K . (2)

Lemma

A basis for the Chevalley-Eilenberg 2-cocycles space Z 2
CE(L; L) is given by

φ1 = e1 ⊗ ∆1,2 + 2e2 ⊗ ∆2,2; φ2 = −2e1 ⊗ ∆1,3 + 2e3 ⊗ ∆3,3;

φ3 = e2 ⊗ ∆1,2; φ4 = e2 ⊗ ∆1,3;

φ5 = 2e2 ⊗ ∆2,2 + e3 ⊗ ∆2,3; φ6 = e3 ⊗ ∆1,2;

φ7 = e3 ⊗ ∆1,3; φ8 = e3 ⊗ ∆2,2,

where ∆i,j(ek , el) = δi,kδj,l and ∆i,j = −(−1)|ei ||ej |∆j,i .
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Example of computation (p > 3)

The case where p > 3. Let (φ, ω) ∈ C 2
∗ (L; L).

Then,

1 (φ, ω) ∈ Z 2
∗ (L; L) if and only if φ ∈ Z 2

CE(L; L) and ω(e1) = γe3, γ ∈ K;

2 φ6 and φ8 are Chevalley-Eilenberg coboundaries;

3 φ5
∼= φ1 and φ7

∼= φ3;

4 ind1(ψ) = 0, ∀ψ ∈ C 1
∗ (L; L).

Therefore, we have

H2
∗(L; L) = Span

{
(φ1, 0); (φ2, 0); (φ3, 0); (φ4, 0); (0, ω5)

}
,

where ω5(e1) = e3.
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3 φ5
∼= φ1 and φ7

∼= φ3;

4 ind1(ψ) = 0, ∀ψ ∈ C 1
∗ (L; L).

Therefore, we have

H2
∗(L; L) = Span

{
(φ1, 0); (φ2, 0); (φ3, 0); (φ4, 0); (0, ω5)

}
,

where ω5(e1) = e3.
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Example of computation (p = 3)

The case where p = 3. Let (φ, ω) ∈ C 2
∗ (L; L). Suppose that

ω(e1) = γ1e1 + γ2e2 + γ3e3, γ1, γ2, γ3 ∈ K .

Then,

1 ∀φ ∈ Z 2
CE(L; L), we have ind2(φ, ω)(e1, e1) = γ2e3.

2 For i ̸= 4, we have ind2(φi , ω)(e2, e1) = γ1e3.

3 For i = 4, ind2(φ4, ω)(e2, e1) = (1 − γ1)e3.

Therefore,

H2
∗(L; L) = Span

{
(φ1, 0); (φ2, 0); (φ3, 0); (φ4, ω4); (0, ω5)

}
,

where ω4(e1) = e1 and ω5(e1) = e3.
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A subcomplex

Let L be a restricted Lie superalgebra and M a restricted L-module. We define a
subspace C 2

∗ (L;M)+ ⊂ C 2
∗ (L;M) by

C 2
∗ (L;M)+ :=

{
(φ, ω) ∈ C 2

∗ (L;M), Im(ω) ⊆ M0̄

}
.

Lemma

(i) We have an inclusion B2
∗(L;M)0̄ ⊂ C 2

∗ (L;M)+.

(ii) The space C 2
∗ (L;M)+ is Z2-graded and the degree of an homogeneous

element (φ, ω) ∈ C 2
∗ (L;M)+ is given by |(φ, ω)| = |φ|.

This Lemma allows us to consider the space Z 2
∗ (L;M)+ := ker

(
d2

∗|C 2
∗(L;M)+

)
. Thus

we can define
H2

∗(L;M)+ := Z 2
∗ (L;M)+/B2

∗(L;M)0̄.

The space H2
∗(L;M)+ is Z2-graded.
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Central extensions of restricted Lie superalgebras

Let
(
L, [·, ·], (·)[p]

)
be a restricted Lie superalgebra, and M be a strongly abelian

restricted Lie superalgebra (i.e, [m, n] = 0 ∀m, n ∈ M, and m[p] = 0 ∀m ∈ M0̄).

A restricted extension of L by M is a short exact sequence of restricted Lie
superalgebras

0 −→ M
ι−→ E

π−→ L −→ 0.

In the case where ι(M) ⊂ z(E ) := {a ∈ E , [a, b] = 0 ∀b ∈ E}, M is a trivial
L-module. These extensions are called restricted central extensions.

Two restricted central extensions of L by M are called equivalent if there is a
restricted Lie superalgebras morphism σ : E1 → E2 such that the following
diagram commutes:
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Central extensions of restricted Lie superalgebras

0 −→ M
ι−→ E

π−→ L −→ 0.

Theorem (Bouarroudj-E.)

Let L be a restricted Lie superalgebra and M a strongly abelian restricted Lie
superalgebra. Then, the equivalence classes of restricted central extensions of L by
M are classified by H2

∗(L;M)+
0̄
.

Structure maps on E . Let (φ, ω) ∈ Z 2
∗ (L;M)+

0̄
. The bracket and the p-maps on

E are given by

[x +m, y + n]E := [x , y ] + φ(x , y), ∀x , y ∈ L, ∀m, n ∈ M; (3)

(x +m)[p]E := x [p] + ω(x), ∀x ∈ L0̄, ∀m ∈ M0̄. (4)
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A brief history of classification of restricted Lie algebras

Hamid Usefi
Salvatore Siciliano

2016 (Schneider and Usefi): Classification of p-nilpotent restricted Lie algebras of
dimension ≤ 4 (Forum Math.);

2016 (Darijani and Usefi): Classification of p-nilpotent restricted Lie algebras of dimension
5, p ≥ 3, contains some mistakes (J. Algebra);

2023 (Maletesta and Siciliano): Classification of p-nilpotent restricted Lie algebras of
dimension 5, p > 3, using another method (J. Algebra).

Proposition

Let L be a p-nilpotent restricted Lie superalgebra of dimension n. Then, L is
isomorphic to a central extension by a restricted 2-cocycle of a p-nilpotent
restricted Lie superalgebra of dimension n − 1.
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Dimension 3

sdim(L) = (1|2): L = ⟨e1|e2, e3⟩.

1 L1
1|2 = ⟨e1|e2, e3⟩ (abelian):

1 e
[p]
1 = 0;

2 L2
1|2 = ⟨e1|e2, e3; [e2, e3] = e1⟩:
1 e

[p]
1 = 0;

3 L3
1|2 = ⟨e1|e2, e3; [e1, e2] = e3⟩:
1 e

[p]
1 = 0.

4 L4
1|2 = ⟨e1|e2, e3; [e3, e3] = e1⟩:
1 e

[p]
1 = 0;

sdim(L) = (2|1): L = ⟨e1, e2|e3⟩.

1 L1
2|1 = ⟨e1, e2|e3⟩ (abelian):

1 e
[p]
1 = e

[p]
2 = 0;

2 e
[p]
1 = e2, e

[p]
2 = 0.

2 L2
2|1 = ⟨e1, e2|e3; [e3, e3] = e2⟩:
1 e

[p]
1 = e

[p]
2 = 0;

2 e
[p]
1 = e2, e

[p]
2 = 0.

sdim(L) = (3|0): L = ⟨e1, e2, e3⟩, (see Schneider-Usefi).

1 L1
3|0 = ⟨e1, e2, e3⟩ (abelian):

1 e
[p]
1 = e

[p]
2 = e

[p]
3 = 0;

2 e
[p]
1 = e2, e

[p]
2 = e

[p]
3 = 0;

3 e
[p]
1 = e2, e

[p]
2 = e3, e

[p]
3 = 0.

2 L2
3|0 = ⟨e1, e2, e3; [e1, e2] = e3⟩

1 e
[p]
1 = e

[p]
2 = e

[p]
3 = 0;

2 e
[p]
1 = e3, e

[p]
2 = e

[p]
3 = 0.
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The classification method

1 For each 3-dimensional Lie superalgebra of the previous list, we compute the
equivalence classes of non-trivial ordinary 2-cocycles under the action by
automorphisms given by

(Aφ)(x , y) = φ
(
A(x),A(y)

)
, ∀x , y ∈ L (5)

2 We build the corresponding central extensions.

3 Some of the superalgebras obtained are isomorphic. We detect and remove
redundancies.

4 Using Jacobson’s Theorem, we check whether the p-maps on the even part
are compatible with the odd part.
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Dimension 4: the classification. Lie superalgebras.

Theorem

The classification of 4-dimensional nilpotent Lie superalgebras over an algebraically closed field of
characteristic different from 2 is given by:

sdim(L) = (0|4): L = ⟨0|x1, x2, x3, x4⟩
L1
0|4 : [·, ·] = 0.

sdim(L) = (1|3): L = ⟨x1|x2, x3, x4⟩
L1
1|3 : abelian;

L2
1|3 : [x1, x3] = x4;

L3
1|3 : [x2, x3] = x1;

L4
1|3 : [x1, x2] = x3, [x1, x3] = x4;

L5
1|3 : [x3, x3] = x1;

L6
1|3 : [x2, x2] = x1, [x3, x4] = x1.

sdim(L) = (2|2): L = ⟨x1, x2|x3, x4⟩
L1
2|2 : abelian;

L2
2|2 : [x3, x4] = x2;

L3
2|2 : [x3, x3] = x2, [x3, x4] = x1;

L4
2|2 : [x3, x3] = [x4, x4] = x2, [x3, x4] = x1;

L5
2|2 : [x1, x3] = x4;

L6
2|2 : [x1, x3] = x4, [x3, x3] = x2.

L7
2|2 : [x4, x4] = x1.

sdim(L) = (3|1): L = ⟨x1, x2, x3|x4⟩
L1
3|1 : abelian;

L2
3|1 : [x1, x2] = x3;

L3
3|1 : [x2, x2] = x3;

L4
3|1 : [x1, x2] = [x3, x4] = x3.

sdim(L) = (4|0): L = ⟨x1, x2, x3, x4|0⟩
L1
4|0 : abelian;

L2
4|0 : [x1, x2] = x3;

L3
4|0 : [x1, x2] = x3, [x1, x3] = x4.
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Dimension 4: the classification. p|2p maps.

Theorem

The p-nilpotent structures on nilpotent Lie superalgebras of total dimension 4
with dim(L1̄) > 0 are given by:

sdim(L) = (0|4): none.
sdim(L) = (1|3): x [p]1 = 0.

sdim(L) = (2|2):
▶ x

[p]1
1 = x

[p]1
2 = 0;

▶ x
[p]2
1 = x2, x

[p]2
2 = 0.

sdim(L) = (3|1):
▶ Case L0̄ abelian:

⋆ x
[p]1
1 = x

[p]1
2 = x

[p]1
3 = 0;

⋆ x
[p]2
1 = x2, x

[p]2
2 = x

[p]2
3 = 0.

⋆ x
[p]3
1 = x2, x

[p]3
2 = x3, x

[p]3
3 = 0.

▶ Case L0̄
∼= L2

3|0 = ⟨x1, x2, x3; [x1, x2] = x3⟩:
⋆ x

[p]4
1 = x

[p]4
2 = x

[p]4
3 = 0;

⋆ x
[p]5
1 = x3, x

[p]5
2 = x

[p]5
3 = 0.
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Thank you for your attention!

Main reference:
S. Bouarroudj, Q. Ehret, Central extensions of restricted Lie superalgebras and
classification of p-nilpotent Lie superalgebras in dimension 4,
arXiv:2401.08313.
(to appear in Journal of Algebra and its Applications)
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