Central extensions of restricted Lie superalgebras and classification of *p*-nilpotent Lie superalgebras in dimension 4

Quentin Ehret

Non-associative Algebras, Representations, and Applications Shenzhen, 2024

Joint work with Sofiane Bouarroudj

جامعــة نيويورك أبـوظـبي

- Preliminaries
- Restricted cohomology and central extensions
 - A (very) brief history of restricted cohomology
 - Restricted cohomology for restricted Lie superalgebras
 - Central extensions of restricted Lie superalgebras
- 3 Classification of low dimensional restricted Lie superalgebras
 - A brief history of classification of restricted Lie algebras
 - Dimension 3
 - Dimension 4

Restricted Lie algebras

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]}: L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:

- $[x, y^{[p]}] = [[\cdots [x, y], y], \cdots, y];$
- $(x+y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(x,y),$

Nathan Jacobson (1910-1999)

with $is_i(x,y)$ the coefficient of Z^{i-1} in $ad_{Zx+y}^{p-1}(x)$. Such a map $(-)^{[p]}:L\longrightarrow L$ is called p-map.

Example: any associative algebra A with [a, b] = ab - ba and $a^{[p]} = a^p$, $\forall a, b \in A$.

Restricted Lie algebras

Definition

A Lie algebra morphism $f: (L, [\cdot, \cdot], (\cdot)^{[p]}) \to (L', [\cdot, \cdot]', (\cdot)^{[p]'})$ is called **restricted** if

$$f(x^{[p]})=f(x)^{[p]'}, \ \forall x \in L.$$

A L-module M is called restricted if

$$x^{[p]} \cdot m = \left(\overbrace{x \cdot (x \cdots (x \cdot m) \cdots)} \right), \ \forall x \in L, \ \forall m \in M.$$

Restricted Lie superalgebras

Definition (Restricted Lie superalgebra)

A restricted Lie superalgebra is a Lie superalgebra $L = L_{\bar{0}} \oplus L_{\bar{1}}$ such that

- The even part $L_{\bar{0}}$ is a restricted Lie algebra;
- ② The odd part $L_{\bar{1}}$ is a Lie $L_{\bar{0}}$ -module;

$$[x, y^{[p]}] = [[...[x, y], y], ..., y], \ \forall x \in L_{\bar{1}}, \ y \in L_{\bar{0}}.$$

Restricted Lie superalgebras

Definition (Restricted Lie superalgebra)

A restricted Lie superalgebra is a Lie superalgebra $L = L_{\bar{0}} \oplus L_{\bar{1}}$ such that

- The even part $L_{\bar{0}}$ is a restricted Lie algebra;
- **2** The odd part $L_{\bar{1}}$ is a Lie $L_{\bar{0}}$ -module;

We can define a map $(\cdot)^{[2p]}:L_{ar{1}} o L_{ar{0}}$ by

$$x^{[2p]} = (x^2)^{[p]}$$
, with $x^2 = \frac{1}{2}[x, x]$, $x \in L_{\bar{1}}$.

Restricted Lie superalgebras

Definition (Restricted Lie superalgebra)

A restricted Lie superalgebra is a Lie superalgebra $L = L_{\bar{0}} \oplus L_{\bar{1}}$ such that

- The even part $L_{\bar{0}}$ is a restricted Lie algebra;
- ② The odd part $L_{\bar{1}}$ is a Lie $L_{\bar{0}}$ -module;

$$[x, y^{[p]}] = [[...[x, y], y], ..., y], \ \forall x \in L_{\bar{1}}, \ y \in L_{\bar{0}}.$$

We can define a map $(\cdot)^{[2p]}:L_{ar{1}} o L_{ar{0}}$ by

$$x^{[2p]} = (x^2)^{[p]}$$
, with $x^2 = \frac{1}{2}[x, x]$, $x \in L_{\bar{1}}$.

Theorem (Jacobson)

Let $(e_j)_{j\in J}$ be a basis of $L_{\bar 0}$, and let the elements $f_j\in L_{\bar 0}$ be such that $(\operatorname{ad}_{e_j})^p=\operatorname{ad}_{f_j}$. Then, there exists exactly one p|2p-mapping $(\cdot)^{[p|2p]}:L\to L$ such that

$$e_i^{[p]} = f_j$$
 for all $j \in J$.

A (very) brief history of restricted cohomology

• 1955 (Hochschild): $H^n_*(L, M) := \operatorname{Ext}^n_{U_p(L)}(\mathbb{F}, M)$.

Gerhard Hochschild

A (very) brief history of restricted cohomology

• 1955 (Hochschild): $H_*^n(L, M) := \operatorname{Ext}_{U_n(L)}^n(\mathbb{F}, M)$.

Gerhard Hochschild

 2000 (Evans-Fuchs): explicit constructions of 2-cocycles and central extensions.

Tyler J. Evans

Dmitry B. Fuchs

A (very) brief history of restricted cohomology

• 1955 (Hochschild): $H_*^n(L, M) := \operatorname{Ext}_{U_n(L)}^n(\mathbb{F}, M)$.

Gerhard Hochschild

 2000 (Evans-Fuchs): explicit constructions of 2-cocycles and central extensions.

Tyler J. Evans

Dmitry B. Fuchs

• 2020 (Yuan-Chen-Cao): attempt to generalize to the superalgebras case.

Let $L = L_{\bar{0}} \oplus L_{\bar{1}}$ be a restricted Lie superalgebra and let M be a L-module.

We set $C^0_*(L, M) = M$ and $C^1_*(L, M) = \text{Hom}(L, M)$.

Let $L = L_{\bar{0}} \oplus L_{\bar{1}}$ be a restricted Lie superalgebra and let M be a L-module.

We set $C^0_*(L, M) = M$ and $C^1_*(L, M) = \text{Hom}(L, M)$.

Definition (Restricted 2-cochains)

Let $\varphi \in C^2_{CE}(L,M)$ (ordinary Chevalley-Eilenberg 2-cochain) and $\omega : L \longrightarrow M$. Then ω is φ -compatible if

Let $L = L_{\bar{0}} \oplus L_{\bar{1}}$ be a restricted Lie superalgebra and let M be a L-module.

We set $C^0_*(L,M)=M$ and $C^1_*(L,M)=\operatorname{Hom}(L,M)$.

Definition (Restricted 2-cochains)

Let $\varphi \in C^2_{CE}(L,M)$ (ordinary Chevalley-Eilenberg 2-cochain) and $\omega:L\longrightarrow M$. Then ω is φ -compatible if

- $\bullet \omega(\lambda x) = \lambda^p \omega(x), \ \forall \lambda \in \mathbb{F}, \ \forall x \in L_{\bar{0}};$

$$\sum_{\substack{x_i = x \text{ or } y \\ x_1 = x, x_2 = y}} \frac{1}{\sharp(x)} \sum_{k=0}^{p-2} (-1)^k x_p \cdots x_{p-k+1} \varphi ([[\cdots [x_1, x_2], x_3] \cdots, x_{p-k-1}], x_{p-k}),$$

with $x, y \in L_{\bar{0}}$, $\sharp(x)$ the number of factors x_i equal to x.

Let $L = L_{\bar{0}} \oplus L_{\bar{1}}$ be a restricted Lie superalgebra and let M be a L-module.

We set $C^0_*(L, M) = M$ and $C^1_*(L, M) = \text{Hom}(L, M)$.

Definition (Restricted 2-cochains)

Let $\varphi \in C^2_{CE}(L,M)$ (ordinary Chevalley-Eilenberg 2-cochain) and $\omega:L\longrightarrow M$. Then ω is φ -compatible if

$$\sum_{\substack{x_i = x \text{ or } y \\ x_1 = x, x_2 = y}} \frac{1}{\sharp(x)} \sum_{k=0}^{p-2} (-1)^k x_p \cdots x_{p-k+1} \varphi([[\cdots [x_1, x_2], x_3] \cdots, x_{p-k-1}], x_{p-k}),$$

with $x, y \in L_{\bar{0}}$, $\sharp(x)$ the number of factors x_i equal to x.

$$C^2_*(\mathsf{L},\mathsf{M}) := \left\{ (arphi,\omega), \; arphi \in C^2_{\mathit{CE}}(\mathsf{L},\mathsf{M}), \; \omega \; \textit{is } arphi \textit{-compatible}
ight\}$$

 \rightsquigarrow We have a similar (although more complicated) definition for $C^3_*(L, M)$.

For $(\varphi, \omega) \in C^2_*(L; M)$, we write

$$(\varphi,\omega) = (\varphi_{\bar{0}},\omega_{\bar{0}}) + (\varphi_{\bar{1}},\omega_{\bar{1}}), \text{ where } \operatorname{Im}(\omega_{\bar{j}}) \subseteq M_{\bar{j}}. \tag{1}$$

Observe that also $(\varphi_{\overline{i}}, \omega_{\overline{i}}) \in C^2_*(L; M)$, thanks to the φ -compatibility.

For $(\varphi, \omega) \in C^2_*(L; M)$, we write

$$(\varphi,\omega) = (\varphi_{\bar{0}},\omega_{\bar{0}}) + (\varphi_{\bar{1}},\omega_{\bar{1}}), \text{ where } \operatorname{Im}(\omega_{\bar{j}}) \subseteq M_{\bar{j}}. \tag{1}$$

Observe that also $(\varphi_{\bar{i}}, \omega_{\bar{i}}) \in C^2_*(L; M)$, thanks to the φ -compatibility.

In the sequel we will define the maps

$$0 \longrightarrow C^0_*(L,M) \xrightarrow{d^0_*} C^1_*(L,M) \xrightarrow{d^1_*} C^2_*(L,M) \xrightarrow{d^2_*} C^3_*(L,M).$$

For $(\varphi, \omega) \in C^2_*(L; M)$, we write

$$(\varphi,\omega) = (\varphi_{\bar{0}},\omega_{\bar{0}}) + (\varphi_{\bar{1}},\omega_{\bar{1}}), \text{ where } \operatorname{Im}(\omega_{\bar{j}}) \subseteq M_{\bar{j}}. \tag{1}$$

Observe that also $(\varphi_{\bar{i}}, \omega_{\bar{i}}) \in C^2_*(L; M)$, thanks to the φ -compatibility.

In the sequel we will define the maps

$$0 \longrightarrow C^0_*(L,M) \xrightarrow{d^0_*} C^1_*(L,M) \xrightarrow{d^1_*} C^2_*(L,M) \xrightarrow{d^2_*} C^3_*(L,M).$$

First, we take $d_*^0 := d_{CF}^0$.

Definition of the map $d^1_*: C^1_*(L, M) \longrightarrow C^2_*(L, M)$.

An element $\varphi \in C^1_*(L; M)$ induces a map $\operatorname{ind}^1(\varphi) : L_{\bar{0}} \to M$ given by

$$\operatorname{ind}^{1}(\varphi)(x) = \varphi(x^{[p]}) - x^{p-1}\varphi(x).$$

Definition of the map $d_*^1: C_*^1(L, M) \longrightarrow C_*^2(L, M)$.

An element $\varphi \in C^1_*(L;M)$ induces a map $\operatorname{ind}^1(\varphi): L_{\bar 0} \to M$ given by

$$\operatorname{ind}^{1}(\varphi)(x) = \varphi(x^{[p]}) - x^{p-1}\varphi(x).$$

Theorem (Evans-Fuchs)

• The map $\operatorname{ind}^1(\varphi)$ is $d_{CE}^1\varphi$ -compatible. Therefore,

$$d^1_*(\varphi) := \left(d^1_{\mathit{CE}} \varphi, \mathit{ind}^1(\varphi)\right) \in C^2_*(L; M).$$

Definition of the map $d^1_*: C^1_*(L, M) \longrightarrow C^2_*(L, M)$.

An element $\varphi \in C^1_*(L;M)$ induces a map $\operatorname{ind}^1(\varphi):L_{\bar 0} \to M$ given by

$$\operatorname{ind}^{1}(\varphi)(x) = \varphi(x^{[p]}) - x^{p-1}\varphi(x).$$

Theorem (Evans-Fuchs)

• The map $\operatorname{ind}^1(\varphi)$ is $d_{CE}^1\varphi$ -compatible. Therefore,

$$d^1_*(\varphi) := \left(d^1_{\mathit{CE}}\varphi, \mathit{ind}^1(\varphi)\right) \in C^2_*(L; M).$$

② We have $d_*^1 \circ d_*^0 = 0$.

Definition of the map $d^1_*: C^1_*(L, M) \longrightarrow C^2_*(L, M)$.

An element $\varphi \in C^1_*(L;M)$ induces a map $\operatorname{ind}^1(\varphi): L_{\bar{0}} \to M$ given by

$$\operatorname{ind}^{1}(\varphi)(x) = \varphi(x^{[p]}) - x^{p-1}\varphi(x).$$

Theorem (Evans-Fuchs)

1 The map $\operatorname{ind}^1(\varphi)$ is $d^1_{CE}\varphi$ -compatible. Therefore,

$$d^1_*(\varphi) := \left(d^1_\mathit{CE}\varphi, \mathit{ind}^1(\varphi)\right) \in \mathit{C}^2_*(\mathit{L}; \mathit{M}).$$

- ② We have $d_*^1 \circ d_*^0 = 0$.
- The space $H^1_*(L; M) := Ker(d^1_*) / Im(d^0_*)$ is well defined.

Definition of the map $d_*^2: C_*^2(L, M) \longrightarrow C_*^3(L, M)$.

An element $(\varphi, \omega) \in C^2_*(L; M)$ induces a map $\operatorname{ind}^2(\varphi, \omega) : L \times L_{\bar{0}} \to M$ defined by

$$\operatorname{ind}^{2}(\varphi,\omega)(x,y) = \varphi\left(x,y^{[p]}\right) - \sum_{i+j=p-1} (-1)^{i} y^{i} \varphi\left(\left[\left[\cdots\left[x,y\right],\cdots\right],y\right],y\right) + (-1)^{|\varphi||x|} x \omega(y),$$

for $\operatorname{Im}(\omega) \subseteq M_{|\varphi|}$, and then extended using (1).

Definition of the map $d_*^2: C_*^2(L, M) \longrightarrow C_*^3(L, M)$.

An element $(\varphi, \omega) \in C^2_*(L; M)$ induces a map $\operatorname{ind}^2(\varphi, \omega) : L \times L_{\bar{0}} \to M$ defined by

$$\operatorname{ind}^{2}(\varphi,\omega)(x,y) = \varphi\left(x,y^{[p]}\right) - \sum_{i+j=p-1} (-1)^{i} y^{i} \varphi\left(\left[\left[\cdots\left[x,y\right],\cdots\right],y\right],y\right) + (-1)^{|\varphi||x|} x \omega(y),$$

for $Im(\omega) \subseteq M_{|\varphi|}$, and then extended using (1).

Theorem (Bouarroudj-E.)

• The map ind²(φ, ω) is d²_{CF} φ -compatible.

Definition of the map $d_*^2: C_*^2(L, M) \longrightarrow C_*^3(L, M)$.

An element $(\varphi, \omega) \in C^2_*(L; M)$ induces a map $\operatorname{ind}^2(\varphi, \omega) : L \times L_{\bar{0}} \to M$ defined by

$$\operatorname{ind}^{2}(\varphi,\omega)(x,y) = \varphi\left(x,y^{[p]}\right) - \sum_{i+j=p-1} (-1)^{i} y^{i} \varphi\left(\left[\left[\cdots\left[x,y\right],\cdots\right],y\right],y\right) + (-1)^{|\varphi||x|} x \omega(y),$$

for $\operatorname{Im}(\omega) \subseteq M_{|\varphi|}$, and then extended using (1).

Theorem (Bouarroudj-E.)

- The map $\operatorname{ind}^2(\varphi,\omega)$ is $\operatorname{d}^2_{\operatorname{CE}}\varphi$ -compatible.
- **②** We have $d_*^2 \circ d_*^1 = 0$, where $d_*^2(\varphi, \omega) := (d_{CF}^2 \varphi, \operatorname{ind}^2(\varphi, \omega))$.

Definition of the map $d_*^2: C_*^2(L, M) \longrightarrow C_*^3(L, M)$.

An element $(\varphi, \omega) \in C^2_*(L; M)$ induces a map $\operatorname{ind}^2(\varphi, \omega) : L \times L_{\bar{0}} \to M$ defined by

$$\operatorname{ind}^{2}(\varphi,\omega)(x,y) = \varphi\left(x,y^{[p]}\right) - \sum_{i+j=p-1} (-1)^{i} y^{i} \varphi\left(\left[\left[\cdots\left[x,y\right],\cdots\right],y\right],y\right) + (-1)^{|\varphi||x|} x \omega(y),$$

for $\operatorname{Im}(\omega) \subseteq M_{|\varphi|}$, and then extended using (1).

Theorem (Bouarroudj-E.)

- The map $\operatorname{ind}^2(\varphi,\omega)$ is $\operatorname{d}^2_{CF}\varphi$ -compatible.
- $② We have <math>d_*^2 \circ d_*^1 = 0$, where $d_*^2(\varphi, \omega) := (d_{CE}^2 \varphi, \operatorname{ind}^2(\varphi, \omega))$.
- **3** The space $H^2_*(L; M) := Ker(d^2_*) / Im(d^1_*)$ is well defined.

Example of computation

An example. Consider the Lie superalgebra

$$L = \langle e_1 | e_2, e_3 \rangle, [e_1, e_2] = e_3, e_1^{[p]} = 0.$$

Let $\varphi \in \mathcal{C}^2_{\mathsf{CE}}(L; L)$. A map $\omega : L_{\bar{0}} \to L$ is φ -compatible if and only if

$$\omega(\lambda x) = \lambda^p \omega(x) \text{ and } \omega(x+y) = \omega(x) + \omega(y), \ \forall x, y \in L_{\bar{0}}, \ \forall \lambda \in \mathbb{K}.$$
 (2)

Example of computation

An example. Consider the Lie superalgebra

$$L = \langle e_1 | e_2, e_3 \rangle, [e_1, e_2] = e_3, e_1^{[p]} = 0.$$

Let $\varphi \in C^2_{\sf CE}(L;L)$. A map $\omega: L_{\bar 0} \to L$ is φ -compatible if and only if

$$\omega(\lambda x) = \lambda^p \omega(x) \text{ and } \omega(x+y) = \omega(x) + \omega(y), \ \forall x, y \in L_{\bar{0}}, \ \forall \lambda \in \mathbb{K}.$$
 (2)

Lemma

A basis for the Chevalley-Eilenberg 2-cocycles space $Z_{CE}^2(L;L)$ is given by

$$\begin{array}{lclcrcl} \varphi_1 & = & e_1 \otimes \Delta_{1,2} + 2e_2 \otimes \Delta_{2,2}; & \varphi_2 & = & -2e_1 \otimes \Delta_{1,3} + 2e_3 \otimes \Delta_{3,3}; \\ \varphi_3 & = & e_2 \otimes \Delta_{1,2}; & \varphi_4 & = & e_2 \otimes \Delta_{1,3}; \end{array}$$

$$\varphi_5 = 2e_2 \otimes \Delta_{2,2} + e_3 \otimes \Delta_{2,3}; \quad \varphi_6 = e_3 \otimes \Delta_{1,2};$$

$$\varphi_7 = e_3 \otimes \Delta_{1,3}; \qquad \qquad \varphi_8 = e_3 \otimes \Delta_{2,2},$$

where $\Delta_{i,j}(e_k, e_l) = \delta_{i,k}\delta_{j,l}$ and $\Delta_{i,j} = -(-1)^{|e_i||e_j|}\Delta_{j,i}$.

The case where p > 3. Let $(\varphi, \omega) \in C^2_*(L; L)$.

Then,

 $\bullet \ (\varphi,\omega) \in Z^2_*(L;L) \text{ if and only if } \varphi \in Z^2_{\mathsf{CE}}(L;L) \text{ and } \omega(e_1) = \gamma e_3, \ \gamma \in \mathbb{K};$

The case where p > 3. Let $(\varphi, \omega) \in C^2_*(L; L)$.

Then,

- $\bullet \ (\varphi,\omega) \in Z^2_*(L;L) \text{ if and only if } \varphi \in Z^2_{\mathsf{CE}}(L;L) \text{ and } \omega(e_1) = \gamma e_3, \ \gamma \in \mathbb{K};$
- $\ensuremath{\mathbf{Q}}$ φ_{6} and φ_{8} are Chevalley-Eilenberg coboundaries;

The case where p > 3. Let $(\varphi, \omega) \in C^2_*(L; L)$.

Then,

- $\bullet \ (\varphi,\omega) \in Z^2_*(L;L) \text{ if and only if } \varphi \in Z^2_{\mathsf{CE}}(L;L) \text{ and } \omega(e_1) = \gamma e_3, \ \gamma \in \mathbb{K};$
- $oldsymbol{\circ}$ φ_6 and φ_8 are Chevalley-Eilenberg coboundaries;

The case where p > 3. Let $(\varphi, \omega) \in C^2_*(L; L)$.

Then,

- \bullet ind¹(ψ) = 0, $\forall \psi \in C^1_*(L; L)$.

The case where p > 3. Let $(\varphi, \omega) \in C^2_*(L; L)$.

Then,

- $oldsymbol{\circ}$ φ_6 and φ_8 are Chevalley-Eilenberg coboundaries;
- $\operatorname{ind}^{1}(\psi) = 0, \ \forall \psi \in C^{1}_{*}(L; L).$

Therefore, we have

$$H^2_*(L;L) = \text{Span}\{(\varphi_1,0); (\varphi_2,0); (\varphi_3,0); (\varphi_4,0); (0,\omega_5)\},\$$

where $\omega_5(e_1) = e_3$.

The case where p = 3. Let $(\varphi, \omega) \in C^2_*(L; L)$. Suppose that

$$\omega(\textbf{e}_1) = \gamma_1 \textbf{e}_1 + \gamma_2 \textbf{e}_2 + \gamma_3 \textbf{e}_3, \ \gamma_1, \gamma_2, \gamma_3 \in \mathbb{K} \,.$$

Then,

The case where p = 3. Let $(\varphi, \omega) \in C^2_*(L; L)$. Suppose that

$$\omega(\mathbf{e}_1) = \gamma_1 \mathbf{e}_1 + \gamma_2 \mathbf{e}_2 + \gamma_3 \mathbf{e}_3, \ \gamma_1, \gamma_2, \gamma_3 \in \mathbb{K}.$$

Then,

- $\forall \varphi \in Z^2_{\mathsf{CE}}(L; L)$, we have $\mathsf{ind}^2(\varphi, \omega)(e_1, e_1) = \gamma_2 e_3$.
- ② For $i \neq 4$, we have $\operatorname{ind}^2(\varphi_i, \omega)(e_2, e_1) = \gamma_1 e_3$.
- For i = 4, $\operatorname{ind}^2(\varphi_4, \omega)(e_2, e_1) = (1 \gamma_1)e_3$.

Therefore,

$$H^2_*(L;L) = \text{Span}\{(\varphi_1,0); (\varphi_2,0); (\varphi_3,0); (\varphi_4,\omega_4); (0,\omega_5)\},\$$

where $\omega_4(e_1) = e_1$ and $\omega_5(e_1) = e_3$.

A subcomplex

Let L be a restricted Lie superalgebra and M a restricted L-module. We define a subspace $C^2_*(L;M)^+ \subset C^2_*(L;M)$ by

$$C^2_*(L;M)^+:=\Big\{(arphi,\omega)\in C^2_*(L;M),\ \operatorname{Im}(\omega)\subseteq M_{ar{0}}\Big\}.$$

A subcomplex

Let L be a restricted Lie superalgebra and M a restricted L-module. We define a subspace $C^2_*(L;M)^+ \subset C^2_*(L;M)$ by

$$C^2_*(L;M)^+:=\Big\{(\varphi,\omega)\in C^2_*(L;M),\ \operatorname{Im}(\omega)\subseteq M_{\bar{0}}\Big\}.$$

Lemma

- (i) We have an inclusion $B^2_*(L;M)_{\bar 0}\subset C^2_*(L;M)^+$.
- (ii) The space $C^2_*(L;M)^+$ is \mathbb{Z}_2 -graded and the degree of an homogeneous element $(\varphi,\omega)\in C^2_*(L;M)^+$ is given by $|(\varphi,\omega)|=|\varphi|$.

This Lemma allows us to consider the space $Z^2_*(L;M)^+ := \ker \left(d^2_{*|C^2_*(L;M)^+}\right)$. Thus we can define

$$H_*^2(L;M)^+ := Z_*^2(L;M)^+/B_*^2(L;M)_{\bar{0}}.$$

The space $H^2_*(L; M)^+$ is \mathbb{Z}_2 -graded.

Let $(L, [\cdot, \cdot], (\cdot)^{[p]})$ be a restricted Lie superalgebra, and M be a strongly abelian restricted Lie superalgebra (i.e, $[m, n] = 0 \ \forall m, n \in M$, and $m^{[p]} = 0 \ \forall m \in M_{\bar{0}}$).

A **restricted extension** of L by M is a short exact sequence of restricted Lie superalgebras

$$0\longrightarrow M\stackrel{\iota}{\longrightarrow} E\stackrel{\pi}{\longrightarrow} L\longrightarrow 0.$$

Let $(L, [\cdot, \cdot], (\cdot)^{[p]})$ be a restricted Lie superalgebra, and M be a strongly abelian restricted Lie superalgebra (i.e, $[m, n] = 0 \ \forall m, n \in M$, and $m^{[p]} = 0 \ \forall m \in M_{\bar{0}}$).

A **restricted extension** of L by M is a short exact sequence of restricted Lie superalgebras

$$0\longrightarrow M\stackrel{\iota}{\longrightarrow} E\stackrel{\pi}{\longrightarrow} L\longrightarrow 0.$$

In the case where $\iota(M) \subset \mathfrak{z}(E) := \{a \in E, [a, b] = 0 \ \forall b \in E\}, M \text{ is a trivial }$ L-module. These extensions are called **restricted central extensions**.

Two restricted central extensions of L by M are called **equivalent** if there is a restricted Lie superalgebras morphism $\sigma: E_1 \to E_2$ such that the following diagram commutes:

$$0 \longrightarrow M \stackrel{\iota}{\longrightarrow} E \stackrel{\pi}{\longrightarrow} L \longrightarrow 0.$$

Theorem (Bouarroudj-E.)

Let L be a restricted Lie superalgebra and M a strongly abelian restricted Lie superalgebra. Then, the equivalence classes of restricted central extensions of L by M are classified by $H^2_*(L;M)^+_{\bar{0}}$.

$$0 \longrightarrow M \stackrel{\iota}{\longrightarrow} E \stackrel{\pi}{\longrightarrow} L \longrightarrow 0.$$

Theorem (Bouarroudj-E.)

Let L be a restricted Lie superalgebra and M a strongly abelian restricted Lie superalgebra. Then, the equivalence classes of restricted central extensions of L by M are classified by $H^2_*(L;M)^+_{\bar{0}}$.

Structure maps on *E*. Let $(\varphi, \omega) \in Z^2_*(L; M)^+_{\bar{0}}$. The bracket and the *p*-maps on *E* are given by

$$[x+m,y+n]_E := [x,y] + \varphi(x,y), \qquad \forall x,y \in L, \ \forall m,n \in M;$$
 (3)

$$(x+m)^{[p]_E} := x^{[p]} + \omega(x), \qquad \forall x \in L_{\bar{0}}, \ \forall m \in M_{\bar{0}}. \tag{4}$$

Hamid Usefi

Salvatore Siciliano

 2016 (Schneider and Usefi): Classification of p-nilpotent restricted Lie algebras of dimension ≤ 4 (Forum Math.);

Salvatore Siciliano

- 2016 (Schneider and Usefi): Classification of p-nilpotent restricted Lie algebras of dimension ≤ 4 (Forum Math.);
- 2016 (Darijani and Usefi): Classification of p-nilpotent restricted Lie algebras of dimension 5, $p \ge 3$, contains some mistakes (J. Algebra);

Salvatore Siciliano

- 2016 (Darijani and Usefi): Classification of p-nilpotent restricted Lie algebras of dimension 5, $p \ge 3$, contains some mistakes (J. Algebra);
- 2023 (Maletesta and Siciliano): Classification of p-nilpotent restricted Lie algebras of dimension 5, p > 3, using another method (J. Algebra).

Salvatore Siciliano

- 2016 (Schneider and Usefi): Classification of p-nilpotent restricted Lie algebras of dimension

 4 (Forum Math.);
- 2016 (Darijani and Usefi): Classification of p-nilpotent restricted Lie algebras of dimension 5, $p \ge 3$, contains some mistakes (J. Algebra);
- 2023 (Maletesta and Siciliano): Classification of p-nilpotent restricted Lie algebras of dimension 5, p > 3, using another method (J. Algebra).

Proposition

Let L be a p-nilpotent restricted Lie superalgebra of dimension n. Then, L is isomorphic to a central extension by a restricted 2-cocycle of a p-nilpotent restricted Lie superalgebra of dimension n-1.

Dimension 3

•
$$sdim(L) = (1|2)$$
: $L = \langle e_1 | e_2, e_3 \rangle$.

1
$$\mathbf{L}_{1|2}^1 = \langle e_1 | e_2, e_3 \rangle$$
 (abelian):

$$e_1^{[p]} = 0;$$

2
$$L_{1|2}^2 = \langle e_1 | e_2, e_3; [e_2, e_3] = e_1 \rangle$$
:

$$e_1^{[p]} = 0;$$

•
$$\underline{\mathsf{sdim}(L) = (2|1)}$$
: $L = \langle e_1, e_2 | e_3 \rangle$.

1
$$\mathbf{L}_{2|1}^1 = \langle e_1, e_2 | e_3 \rangle$$
 (abelian):
1 $e_1^{[p]} = e_2^{[p]} = 0$;

$$e_1^{[p]} = e_2, e_2^{[p]} = 0.$$

•
$$\operatorname{sdim}(L) = (3|0)$$
: $L = \langle e_1, e_2, e_3 \rangle$, (see Schneider-Usefi).

1
$$L_{3|0}^1 = \langle e_1, e_2, e_3 \rangle$$
 (abelian):

1
$$e_1^{[p]} = e_2^{[p]} = e_3^{[p]} = 0;$$

2 $e_1^{[p]} = e_2, \ e_2^{[p]} = e_2^{[p]} = 0;$

$$\bullet_1^{[p]} = e_2, \ e_2^{[p]} = e_3, \ e_3^{[p]} = 0.$$

3
$$L_{1|2}^3 = \langle e_1 | e_2, e_3; [e_1, e_2] = e_3 \rangle$$
:

$$e_1^{[p]} = 0.$$

4
$$\mathbf{L}_{1|2}^4 = \langle e_1|e_2, e_3; [e_3, e_3] = e_1 \rangle$$
:

$$e_1^{[p]} = 0;$$

2
$$\mathbf{L}_{2|1}^2 = \langle e_1, e_2 | e_3; [e_3, e_3] = e_2 \rangle$$
:

$$e_1^{[p]} = e_2^{[p]} = 0;$$

$$e_1^{[p]} = e_2, \ e_2^{[p]} = 0.$$

2
$$L_{3|0}^2 = \langle e_1, e_2, e_3; [e_1, e_2] = e_3 \rangle$$

$$e_1^{[p]} = e_2^{[p]} = e_2^{[p]} = 0;$$

$$e_1 = e_2 = e_3 = 0,$$
 $e_1^{[p]} = e_3, e_2^{[p]} = e_2^{[p]} = 0.$

The classification method

• For each 3-dimensional Lie superalgebra of the previous list, we compute the equivalence classes of non-trivial *ordinary* 2-cocycles under the action by automorphisms given by

$$(A\varphi)(x,y) = \varphi(A(x),A(y)), \ \forall x,y \in L$$
 (5)

- We build the corresponding central extensions.
- Some of the superalgebras obtained are isomorphic. We detect and remove redundancies.
- Using Jacobson's Theorem, we check whether the p-maps on the even part are compatible with the odd part.

Dimension 4: the classification. Lie superalgebras.

Theorem

The classification of 4-dimensional nilpotent Lie superalgebras over an algebraically closed field of characteristic different from 2 is given by:

```
sdim(L) = (0|4): L = \langle 0|x_1, x_2, x_3, x_4 \rangle
 \mathbf{L}_{\mathbf{0}|\mathbf{4}}^{\mathbf{1}}: [\cdot,\cdot] = 0.
sdim(L) = (1|3): L = \langle x_1 | x_2, x_3, x_4 \rangle
 \mathsf{L}^1_{1|3}: abelian;
  L_{1|3}^2: [x_1, x_3] = x_4;
 L_{1|3}^3: [x_2,x_3]=x_1;
  L_{1|3}^4: [x_1, x_2] = x_3, [x_1, x_3] = x_4;
  L_{1|3}^5: [x_3, x_3] = x_1;
  L_{1|3}^6: [x_2, x_2] = x_1, [x_3, x_4] = x_1.
sdim(L) = (2|2): L = \langle x_1, x_2 | x_3, x_4 \rangle
 L_{2|2}^1: abelian;
  L_{2|2}^2: [x_3, x_4] = x_2;
  L_{2|2}^3: [x_3, x_3] = x_2, [x_3, x_4] = x_1;
  \mathbf{L}_{2|2}^4: [x_3, x_3] = [x_4, x_4] = x_2, [x_3, x_4] = x_1;
  L_{2|2}^5: [x_1, x_3] = x_4;
  \mathbf{L}_{2|2}^{\mathbf{6}}: [x_1, x_3] = x_4, [x_3, x_3] = x_2.
  L_{2|2}^7: [x_4, x_4] = x_1.
```

```
 \begin{split} & \underline{sdim(L)} = (3|1) \colon L = \langle x_1, x_2, x_3 | x_4 \rangle \\ & \overline{L}^1_{3|1} : abelian; \\ & \overline{L}^2_{3|1} : [x_1, x_2] = x_3; \\ & \overline{L}^3_{3|1} : [x_2, x_2] = x_3; \\ & \overline{L}^4_{3|1} : [x_1, x_2] = [x_3, x_4] = x_3. \\ & \underline{sdim(L)} = (4|0) \colon L = \langle x_1, x_2, x_3, x_4 | 0 \rangle \\ & \overline{L}^1_{4|0} : abelian; \\ & \overline{L}^4_{4|0} : [x_1, x_2] = x_3; \\ & \overline{L}^3_{4|0} : [x_1, x_2] = x_3, [x_1, x_3] = x_4. \end{split}
```

Dimension 4: the classification. p|2p maps.

Theorem

The p-nilpotent structures on nilpotent Lie superalgebras of total dimension 4 with $dim(L_{\bar{1}}) > 0$ are given by:

- sdim(L) = (0|4): none.
- $sdim(L) = (1|3): x_1^{[p]} = 0.$
- sdim(L) = (2|2):
 - $x_1^{[p]_1} = x_2^{[p]_1} = 0;$
 - $x_1^{[p]_2} = x_2, \ x_2^{[p]_2} = 0.$
- sdim(L) = (3|1):
 - Case La abelian:
 - $x_1^{[p]_1} = x_2^{[p]_1} = x_3^{[p]_1} = 0;$
 - $x_1^{[p]_2} = x_2, \ x_2^{[p]_2} = x_3^{[p]_2} = 0.$
 - * $x_1^{[p]_3} = x_2, \ x_2^{[p]_3} = x_3, \ x_3^{[p]_3} = 0.$
 - Case $L_{\bar{0}} \cong L_{3|0}^2 = \langle x_1, x_2, x_3; [x_1, x_2] = x_3 \rangle$:
 - $x_1^{[p]_4} = x_2^{[p]_4} = x_3^{[p]_4} = 0;$
 - $x_1^{[p]_5} = x_3, \ x_2^{[p]_5} = x_3^{[p]_5} = 0.$

Thank you for your attention!

Main reference:

S. Bouarroudj, Q. Ehret, Central extensions of restricted Lie superalgebras and classification of p-nilpotent Lie superalgebras in dimension 4, arXiv:2401.08313.

(to appear in Journal of Algebra and its Applications)